Problem 2. For any set $A = \{x_1, x_2, x_3, x_4, x_5\}$ of five distinct positive integers denote by $S_A$ the sum of its elements, and denote by $T_A$ the number of triples $(i, j, k)$ with $1 \le i < j < k \le 5$ for which $x_i + x_j + x_k$ divides $S_A$.
Find the largest possible value of $T_A$.

 

Solution

For distinct indices $i,j,k,m,n$ we have $x_i + x_j + x_k \mid x_i + x_j + x_k + x_m + x_n \Leftrightarrow x_i + x_j + x_k \mid x_m + x_n$. Without loss of generality let $x_1 < x_2 < x_3 < x_4 < x_5$. Then $x_3 + x_4 + x_5 > x_1 + x_2$, $x_2 + x_4 + x_5 > x_1 + x_3$, $x_1 + x_4 + x_5 > x_2 + x_3$, $x_1 + x_3 + x_5 > x_2 + x_4$ and $x_2 + x_3 + x_5 > x_1 + x_4$. Also, $x_1 + x_2 + x_5 \leq x_3 + x_4$ and $x_2 + x_3 + x_4 \leq x_1 + x_5$ cannot simultaenously hold since otherwise adding them and cancelling gives $x_2 \leq 0$, which is false. Therefore we can have at most $4$ sums. An example with $4$ sums is with $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$ and $x_5$ be such that $6$, $7$, $8$ and $9$ divide $x_5 + 10$, so e.g. $x_5 = 6 \cdot 7 \cdot 8 \cdot 9 - 10 = 3014$. (An alternative is $x_5 = \mbox{lcm}(6,7,8,9) - 10 = 494.$)

ББ © 2025
Авторски права ББ © 2025